The Unique Prime Factorization Theorem

Theorem 4.3.5, The Unique Prime Factorization Theorem (UFT) (Also called The Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist:

- 1) a positive integer k (= the # of prime factors n has.) and k distinct prime numbers, $p_1, p_2, p_3, ..., p_k$ and
- 2) positive integers e_1, e_2, \ldots, e_k (exponents), that is $e_i \ge 1, \forall i$, such that $n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \ldots p_k^{e_k}$

and any other factorization of n into a product of prime factors is the same as this one except that the prime factors may be rearranged in a different order.